Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Dobarco M. R., Arrouays D., Lagacherie P., Ciampalini Rossano, Saby N. P. A. (2017). Prediction of topsoil texture for Region Centre (France) applying model ensemble methods. Geoderma, 298, 67-77. ISSN 0016-7061

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1016/j.geoderma.2017.03.015

Titre
Prediction of topsoil texture for Region Centre (France) applying model ensemble methods
Année de publication2017
Type de documentArticle référencé dans le Web of Science WOS:000400228100007
AuteursDobarco M. R., Arrouays D., Lagacherie P., Ciampalini Rossano, Saby N. P. A.
SourceGeoderma, 2017, 298, p. 67-77. ISSN 0016-7061
RésuméWith the rapid development of digital soil mapping it is not unusual to find several maps for the same soilproperty in an area of interest. We applied two standard methods of model averaging for combining two regional maps and a European map of topsoil texture in agricultural land for the Region Centre (France). The two methods for model ensemble were the Granger-Ramanathan (G-R) and the Bates-Granger (B-G). A calibration dataset was used for fitting the coefficients of the G-R model, and for calculating a global variance: prediction error ratio which was then used to re-scale the weights of the B-G model. The prediction performance of the three primary maps and the two ensemble maps was compared with an independent validation dataset consisting on 100 observations from the French soil monitoring network. The prediction accuracy of the ensemble models improved only for day in comparison to the primary maps (Delta R-2 = 0.02-0.06, Delta RMSE = -1.56- - 4.97 g kg(-1)). Overall, the G-R models obtained smaller RMSE and greater bias than B-G, and G-R estimated better the prediction uncertainty. The dissimilarities between the methods for estimating the prediction variance and non-optimal estimated uncertainties were important limitations for the B-G models despite applying a global correction factor for the prediction variances. The results suggested that both the calibration and validation datasets should represent the patterns of spatial variation and range of values of the soil property for the prediction space. Nonetheless, model ensemble methods proved to be useful for merging maps with different types of datasets, spatial coverage, and methodological approaches.
Plan de classementPédologie [068]
Descr. géo.FRANCE
LocalisationFonds IRD [F B010069978]
Identifiant IRDfdi:010069978
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010069978

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito