Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

Publications des scientifiques de l'IRD

dos Santos A. M., Mitja Danielle, Delaître Eric, Demagistri Laurent, Miranda I. D., Libourel T., Petit Michel. (2017). Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images. Journal of Environmental Management, 193, 40-51. ISSN 0301-4797

Accès réservé (Intranet IRD) Document en accès réservé (Intranet IRD)

Lien direct chez l'éditeur doi:10.1016/j.jenvman.2017.02.004

Titre
Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images
Année de publication2017
Type de documentArticle référencé dans le Web of Science WOS:000397687100005
Auteursdos Santos A. M., Mitja Danielle, Delaître Eric, Demagistri Laurent, Miranda I. D., Libourel T., Petit Michel.
SourceJournal of Environmental Management, 2017, 193, p. 40-51. ISSN 0301-4797
RésuméHigh spatial resolution images as well as image processing and object detection algorithms are recent technologies that aid the study of biodiversity and commercial plantations of forest species. This paper seeks to contribute knowledge regarding the use of these technologies by studying randomly dispersed native palm tree. Here, we analyze the automatic detection of large circular crown (LCC) palm tree using a high spatial resolution panchromatic GeoEye image (0.50 m) taken on the area of a community of small agricultural farms in the Brazilian Amazon. We also propose auxiliary methods to estimate the density of the LCC palm tree Attalea speciosa (babassu) based on the detection results. We used the "Compt-palm" algorithm based on the detection of palm tree shadows in open areas via mathematical morphology techniques and the spatial information was validated using field methods (i.e. structural census and georeferencing). The algorithm recognized individuals in life stages 5 and 6, and the extraction percentage, branching factor and quality percentage factors were used to evaluate its performance. A principal components analysis showed that the structure of the studied species differs from other species. Approximately 96% of the babassu individuals in stage 6 were detected. These individuals had significantly smaller stipes than the undetected ones. In turn, 60% of the stage 5 babassu individuals were detected, showing significantly a different total height and a different number of leaves from the undetected ones. Our calculations regarding resource availability indicate that 6870 ha contained 25,015 adult babassu palm tree, with an annual potential productivity of 27.4 t of almond oil. The detection of LCC palm tree and the implementation of auxiliary field methods to estimate babassu density is an important first step to monitor this industry resource that is extremely important to the Brazilian economy and thousands of families over a large scale.
Plan de classementEtudes, transformation, conservation du milieu naturel [082] ; Télédétection [126]
Descr. géo.BRESIL ; AMAZONIE
LocalisationFonds IRD [F B010069490]
Identifiant IRDfdi:010069490
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010069490

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Nouméa

Papeete

Niamey

Ouagadougou

Tunis

La Paz

Quito