Publications des scientifiques de l'IRD

Astudillo O., Dewitte Boris, Mallet M., Frappart F., Rutllant J. A., Ramos M., Bravo L., Goubanova K., Illig Serena. (2017). Surface winds off Peru-Chile : observing closer to the coast from radar altimetry. Remote Sensing of Environment, 191, p. 179-196. ISSN 0034-4257.

Titre du document
Surface winds off Peru-Chile : observing closer to the coast from radar altimetry
Année de publication
2017
Type de document
Article référencé dans le Web of Science WOS:000397360500015
Auteurs
Astudillo O., Dewitte Boris, Mallet M., Frappart F., Rutllant J. A., Ramos M., Bravo L., Goubanova K., Illig Serena
Source
Remote Sensing of Environment, 2017, 191, p. 179-196 ISSN 0034-4257
The near-shore surface mesoscale atmospheric circulation in the upwelling systems off Peru and Chile is influential on the Sea Surface Temperature through Ekman transport and pumping. There has been a debate whether or not the so-called "wind drop-off", that is a shoreward decrease of the surface wind speed near the coast, can act as an effective forcing of upwelling through Ekman pumping. Although the wind drop-off has been simulated by high-resolution atmospheric models, it has not been well documented due to uncertainties in the scatterometry-derived wind estimates associated with land contamination. Here we use the along-track altimetry-derived surface wind speed data from ENVISAT, Jason-1, Jason-2, and SARAL satellites, to document the spatial variability of the mean wind drop-off near the coast as estimated from the inversion of the radar backscattering coefficient. The data are first calibrated so as to fit with the scatterometer observations of previous and current satellite missions (QuikSCAT, ASCAT). The calibrated data are then analyzed near the coast and a wind drop-off scale is estimated. The results indicate that the wind drop-off takes place all along the coast, though with a significant alongshore variability in its magnitude. Differences between products are shown to be related both to the differences in repeat cycle between the different altimetry missions and to the peculiarities of the coastline shape at the coastal latitudes of the incident tracks. The relative contribution of Ekman pumping and Ekman transport to the total transport is also estimated indicating a comparable contribution off Chile while transport associated to Ekman pumping is on average-1.4 larger than Ekman transport off Peru. Despite the aliasing effect associated with the weak repetitivity of the satellite orbit and the high frequency variability of the winds in this region, the analysis suggests that the seasonal cycle of the surface winds near the coast could be resolved at least off Peru.
Plan de classement
Limnologie physique / Océanographie physique [032] ; Télédétection [126]
Description Géographique
PEROU ; CHILI ; PACIFIQUE
Localisation
Fonds IRD [F B010069439]
Identifiant IRD
fdi:010069439
Contact