Publications des scientifiques de l'IRD

Laurans M., Vincent Grégoire. (2016). Are inter- and intraspecific variations of sapling crown traits consistent with a strategy promoting light capture in tropical moist forest ?. Annals of Botany, 118 (5), p. 983-996. ISSN 0305-7364.

Titre du document
Are inter- and intraspecific variations of sapling crown traits consistent with a strategy promoting light capture in tropical moist forest ?
Année de publication
2016
Type de document
Article référencé dans le Web of Science WOS:000386489600009
Auteurs
Laurans M., Vincent Grégoire
Source
Annals of Botany, 2016, 118 (5), p. 983-996 ISSN 0305-7364
Background and Aims Morphological variation in light-foraging strategies potentially plays important roles in efficient light utilization and carbon assimilation in spatially and temporally heterogeneous environments such as tropical moist forest understorey. By considering a suite of morphological traits at various hierarchical scales, we examined the functional significance of crown shape diversity and plasticity in response to canopy openness. Methods We conducted a field comparative study in French Guiana among tree saplings of 14 co-occurring species differing in light-niche optimum and breadth. Each leaf, axis or crown functional trait was characterized by a median value and a degree of plasticity expressed under contrasting light regimes. Key Results We found divergent patterns between shade-tolerant and heliophilic species on the one hand and between shade and sun plants on the other. Across species, multiple regression analysis showed that relative crown depth was positively correlated with leaf lifespan and not correlated with crown vertical growth rate. Within species displaying a reduction in crown depth in the shade, we observed that crown depth was limited by reduced crown vertical growth rate and not by accelerated leaf or branch shedding. In addition, the study provides contrasting examples of morphological multilevel plastic responses, which allow the maintenance of efficient foliage and enable effective whole-plant light capture in shaded conditions under a moderate vertical light gradient. Conclusions This result suggests that plastic adjustment of relative crown depth does not reflect a strategy maximizing light capture efficiency. Integrating and scaling-up leaf-level dynamics to shoot-and crown-level helps to interpret in functional and adaptive terms inter-and intraspecific patterns of crown traits and to better understand the mechanism of shade tolerance.
Plan de classement
Sciences du monde végétal [076] ; Etudes, transformation, conservation du milieu naturel [082]
Description Géographique
GUYANE FRANCAISE
Localisation
Fonds IRD [F B010068321]
Identifiant IRD
fdi:010068321
Contact