Publications des scientifiques de l'IRD

Zhang S. D., Santini C. L., Zhang W. J., Barbe V., Mangenot S., Guyomar C., Garel M., Chen H. T., Li X. G., Yin Q. J., Zhao Y., Armengaud J., Gaillard J. C., Martini Séverine, Pradel Nathalie, Vidaud C., Alberto F., Medigue C., Tamburini C., Wu L. F. (2016). Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200. Extremophiles, 20 (3), p. 301-310. ISSN 1431-0651.

Titre du document
Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200
Année de publication
2016
Type de document
Article référencé dans le Web of Science WOS:000374832100007
Auteurs
Zhang S. D., Santini C. L., Zhang W. J., Barbe V., Mangenot S., Guyomar C., Garel M., Chen H. T., Li X. G., Yin Q. J., Zhao Y., Armengaud J., Gaillard J. C., Martini Séverine, Pradel Nathalie, Vidaud C., Alberto F., Medigue C., Tamburini C., Wu L. F.
Source
Extremophiles, 2016, 20 (3), p. 301-310 ISSN 1431-0651
Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.
Plan de classement
Limnologie biologique / Océanographie biologique [034] ; Biotechnologies [084]
Localisation
Fonds IRD [F B010066844]
Identifiant IRD
fdi:010066844
Contact