Publications des scientifiques de l'IRD

Roy Tilla, Lombard F., Bopp L., Gehlen M. (2015). Projected impacts of climate change and ocean acidification on the global biogeography of planktonic Foraminifera. Biogeosciences, 12 (10), p. 2873-2889. ISSN 1726-4170.

Titre du document
Projected impacts of climate change and ocean acidification on the global biogeography of planktonic Foraminifera
Année de publication
2015
Type de document
Article référencé dans le Web of Science WOS:000356179300004
Auteurs
Roy Tilla, Lombard F., Bopp L., Gehlen M.
Source
Biogeosciences, 2015, 12 (10), p. 2873-2889 ISSN 1726-4170
Planktonic Foraminifera are a major contributor to the deep carbonate flux and their microfossil deposits form one of the richest databases for reconstructing paleoenvironments, particularly through changes in their taxonomic and shell composition. Using an empirically based planktonic foraminifer model that incorporates three known major physiological drivers of their biogeography - temperature, food and light - we investigate (i) the global redistribution of planktonic Foraminifera under anthropogenic climate change and (ii) the alteration of the carbonate chemistry of foraminiferal habitat with ocean acidification. The present-day and future (2090-2100) 3-D distributions of Foraminifera are simulated using temperature, plankton biomass and light from an Earth system model forced with a historical and a future (IPCC A2) high CO2 emission scenario. Foraminiferal abundance and diversity are projected to decrease in the tropics and subpolar regions and increase in the subtropics and around the poles. Temperature is the dominant control on the future change in the biogeography of Foraminifera. Yet food availability acts to either reinforce or counteract the temperature-driven changes. In the tropics and subtropics the largely temperature-driven shift to depth is enhanced by the increased concentration of phytoplankton at depth. In the higher latitudes the food-driven response partly offsets the temperature-driven reduction both in the subsurface and across large geographical regions. The large-scale rearrangements in foraminiferal abundance and the reduction in the carbonate ion concentrations in the habitat range of planktonic foraminifers - from 10-30 mu mol kg(-1) in their polar and subpolar habitats to 30-70 mu mol kg(-1) in their subtropical and tropical habitats - would be expected to lead to changes in the marine carbonate flux. High-latitude species are most vulnerable to anthropogenic change: their abundance and available habitat decrease and up to 10% of the volume of their habitat drops below the calcite saturation horizon.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Limnologie physique / Océanographie physique [032] ; Ecologie, systèmes aquatiques [036]
Localisation
Fonds IRD [F B010064711]
Identifiant IRD
fdi:010064711
Contact