Publications des scientifiques de l'IRD

Nieblas A. E., Demarcq Hervé, Drushka K., Sloyan B., Bonhommeau S. (2014). Front variability and surface ocean features of the presumed southern bluefin tuna spawning grounds in the tropical southeast Indian Ocean. Deep-Sea Research Part II :Topical Studies in Oceanography, 107, p. 64-76. ISSN 0967-0645.

Titre du document
Front variability and surface ocean features of the presumed southern bluefin tuna spawning grounds in the tropical southeast Indian Ocean
Année de publication
2014
Type de document
Article référencé dans le Web of Science WOS:000343844600008
Auteurs
Nieblas A. E., Demarcq Hervé, Drushka K., Sloyan B., Bonhommeau S.
Source
Deep-Sea Research Part II :Topical Studies in Oceanography, 2014, 107, p. 64-76 ISSN 0967-0645
The southern bluefin tuna (SBT, Thunnus maccoyii) is an ecologically and economically valuable fish. However, surprisingly little is known about its critical early life history, a period when mortality is several orders of magnitude higher than at any other life stage, and when larvae are highly sensitive to environmental conditions. Ocean fronts can be important in creating favourable spawning conditions, as they are a convergence of water masses with different properties that can concentrate planktonic particles and lead to enhanced productivity. In this study, we examine the front activity within the only region where SBT have been observed to spawn: the tropical southeast Indian Ocean between Indonesia and Australia (10 degrees S-20 degrees S, 105 degrees E-125 degrees E). We investigate front activity and its relationship to ocean dynamics and surface features of the region. Results are also presented for the entire Indian Ocean (30 degrees N-45 degrees S, 20 degrees E-140 degrees E) to provide a background context. We use an extension of the Cayula and Cornillon algorithm to detect ocean fronts from satellite images of sea surface temperature (SST) and chlorophyll-a concentration (chl-a). Front occurrence represents the probability of occurrence of a front at each pixel of an image. Front intensity represents the magnitude of the difference between the two water masses that make up a front. Relative to the rest of the Indian Ocean, both SST and chl-a fronts in the offshore spawning region are persistent in occurrence and weak in intensity. Front occurrence and intensity along the Australian coast are high, with persistent and intense fronts found along the northwest and west coasts. Fronts in the tropical southeast Indian Ocean are shown to have strong annual variability and some moderate interannual variability. SST front occurrence is found to lead the Southern Oscillation Index by one year, potentially linked to warming and wind anomalies in the Indian Ocean. The surface ocean characteristics of the offshore SBT spawning region are found to be particularly stable compared to the rest of the Indian Ocean in terms of stable SST, low eddy kinetic energy, i.e., low mesoscale eddy activity, and low chl-a. However, this region has high front occurrence, but low front intensity of both SST and chl-a fronts. The potential impact of these oceanic features for SBT spawning is discussed.
Plan de classement
Limnologie physique / Océanographie physique [032]
Description Géographique
OCEAN INDIEN ; ZONE TROPICALE
Localisation
Fonds IRD [F B010062652]
Identifiant IRD
fdi:010062652
Contact