Publications des scientifiques de l'IRD

Saidou A. A., Thuillet Anne-Céline, Couderc Marie, Mariac Cédric, Vigouroux Yves. (2014). Association studies including genotype by environment interactions : prospects and limits. Bmc Genetics, 15, p. art. 3. ISSN 1471-2156.

Titre du document
Association studies including genotype by environment interactions : prospects and limits
Année de publication
2014
Type de document
Article référencé dans le Web of Science WOS:000334610300001
Auteurs
Saidou A. A., Thuillet Anne-Céline, Couderc Marie, Mariac Cédric, Vigouroux Yves
Source
Bmc Genetics, 2014, 15, p. art. 3 ISSN 1471-2156
Background: Association mapping studies offer great promise to identify polymorphisms associated with phenotypes and for understanding the genetic basis of quantitative trait variation. To date, almost all association mapping studies based on structured plant populations examined the main effects of genetic factors on the trait but did not deal with interactions between genetic factors and environment. In this paper, we propose a methodological prospect of mixed linear models to analyze genotype by environment interaction effects using association mapping designs. First, we simulated datasets to assess the power of linear mixed models to detect interaction effects. This simulation was based on two association panels composed of 90 inbreds (pearl millet) and 277 inbreds (maize). Results: Based on the simulation approach, we reported the impact of effect size, environmental variation, allele frequency, trait heritability, and sample size on the power to detect the main effects of genetic loci and diverse effect of interactions implying these loci. Interaction effects specified in the model included SNP by environment interaction, ancestry by environment interaction, SNP by ancestry interaction and three way interactions. The method was finally used on real datasets from field experiments conducted on the two considered panels. We showed two types of interactions effects contributing to genotype by environment interactions in maize: SNP by environment interaction and ancestry by environment interaction. This last interaction suggests differential response at the population level in function of the environment. Conclusions: Our results suggested the suitability of mixed models for the detection of diverse interaction effects. The need of samples larger than that commonly used in current plant association studies is strongly emphasized to ensure rigorous model selection and powerful interaction assessment. The use of ancestry interaction component brought valuable information complementary to other available approaches.
Plan de classement
Sciences du monde végétal [076]
Localisation
Fonds IRD [F B010061961]
Identifiant IRD
fdi:010061961
Contact