Publications des scientifiques de l'IRD

Sanders D., Jones C. G., Thebault E., Bouma T. J., van der Heide T., van Belzen J., Barot Sébastien. (2014). Integrating ecosystem engineering and food webs. Oikos, 123 (5), p. 513-524. ISSN 0030-1299.

Titre du document
Integrating ecosystem engineering and food webs
Année de publication
2014
Type de document
Article référencé dans le Web of Science WOS:000334646100001
Auteurs
Sanders D., Jones C. G., Thebault E., Bouma T. J., van der Heide T., van Belzen J., Barot Sébastien
Source
Oikos, 2014, 123 (5), p. 513-524 ISSN 0030-1299
Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non-trophic interactions, we explore how we might best integrate ecosystem engineering and food webs. We provide rationales justifying their integration and present a provisional framework identifying how ecosystem engineering can affect the nodes and links of food webs and overall organization; how trophic interactions with the engineer can affect the engineering; and how feedbacks between engineering and trophic interactions can affect food web structure and dynamics. We use a simple integrative food chain model to illustrate how feedbacks between the engineer and the food web can alter 1) engineering effects on food web dynamics, and 2) food web responses to extrinsic environmental perturbations. We identify four general challenges to integration that we argue can readily be met, and call for studies that can achieve this integration and help pave the way to a more general understanding of interaction webs in nature. Synthesis All species are affected by their physical environment. Because ecosystem engineering species modify the physical environment and belong to food webs, such species are potentially one of the most important bridges between the trophic and non-trophic. We examine how to integrate the so far, largely independent research areas of ecosystem engineering and food webs. We present a conceptual framework for understanding how engineering can affect food webs and vice versa, and how feedbacks between the two alter ecosystem dynamics. With appropriate empirical studies and models, integration is achievable, paving the way to a more general understanding of interaction webs in nature.
Plan de classement
Etudes, transformation, conservation du milieu naturel [082]
Localisation
Fonds IRD [F B010061924]
Identifiant IRD
fdi:010061924
Contact