Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Kennel P., Tramon M., Barbier Nicolas, Vincent Grégoire. (2013). Canopy height model characteristics derived from airbone laser scanning and its effectiveness in discriminating various tropical moist forest types. International Journal of Remote Sensing, 34 (24), 8917-8935. ISSN 0143-1161

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1080/01431161.2013.858846

Titre
Canopy height model characteristics derived from airbone laser scanning and its effectiveness in discriminating various tropical moist forest types
Année de publication2013
Type de documentArticle référencé dans le Web of Science WOS:000327237000017
AuteursKennel P., Tramon M., Barbier Nicolas, Vincent Grégoire.
SourceInternational Journal of Remote Sensing, 2013, 34 (24), p. 8917-8935. ISSN 0143-1161
RésuméMapping tropical forests to a sufficient level of spatial resolution and structural detail is a prerequisite for their rational management, which however remains a largely unmet challenge. We explore the degree to which a forest canopy height model (CHM) derived from airborne laser scanning (ALS) can discriminate between five forest types of similar height but varying structure or composition. We systematically compare various textural features (Haralick, Fourier transform-based, and wavelet-based features) and various classification procedures (linear discriminant analysis (LDA), random forest(RF), and support vector machine (SVM)) applied to two sizes of sampling units (64mx 64 m and 32mx 32 m). Simple height distribution statistics achieve at best 70% classification accuracy in our sample set comprising 120 sampling units of 64mx 64 m. Using w avelet-based features, this accuracy increases to 79% but drops by 10% with smaller sampling units (32mx 32 m). Classifier performance depends on the texture feature set used, but SVM and RF tend to perform better than LDA. High discrimination rates between forests types of similar height indicate that the ALS-derived CHM provides information suitable for mapping of tropical forest types. Wavelet-based texture features coupled with a SVM classifier was found to be the most promising combination of methods. Ancillary data derived from laser scans and notably topography could be used jointly for an improved segmentation scheme.
Plan de classementTélédétection [126] ; Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Etudes, transformation, conservation du milieu naturel [082]
Descr. géo.ZONE TROPICALE
LocalisationFonds IRD [F B010061312]
Identifiant IRDfdi:010061312
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010061312

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito