Horizon / Plein textes La base de ressources documentaires de l'IRD

IRD

 

Publications des scientifiques de l'IRD

Mbougua J. B. T., Laurent Christian, Ndoye I., Delaporte Eric, Gwet H., Molinari N. (2013). Nonlinear multiple imputation for continuous covariate within semiparametric Cox model : application to HIV data in Senegal. Statistics in Medicine, 32 (26), 4651-4665. ISSN 0277-6715

Accès réservé (Intranet IRD) Demander le PDF

Lien direct chez l'éditeur doi:10.1002/sim.5854

Titre
Nonlinear multiple imputation for continuous covariate within semiparametric Cox model : application to HIV data in Senegal
Année de publication2013
Type de documentArticle référencé dans le Web of Science WOS:000325477300012
AuteursMbougua J. B. T., Laurent Christian, Ndoye I., Delaporte Eric, Gwet H., Molinari N.
SourceStatistics in Medicine, 2013, 32 (26), p. 4651-4665. ISSN 0277-6715
RésuméMultiple imputation is commonly used to impute missing covariate in Cox semiparametric regression setting. It is to fill each missing data with more plausible values, via a Gibbs sampling procedure, specifying an imputation model for each missing variable. This imputation method is implemented in several softwares that offer imputation models steered by the shape of the variable to be imputed, but all these imputation models make an assumption of linearity on covariates effect. However, this assumption is not often verified in practice as the covariates can have a nonlinear effect. Such a linear assumption can lead to a misleading conclusion because imputation model should be constructed to reflect the true distributional relationship between the missing values and the observed values. To estimate nonlinear effects of continuous time invariant covariates in imputation model, we propose a method based on B-splines function. To assess the performance of this method, we conducted a simulation study, where we compared the multiple imputation method using Bayesian splines imputation model with multiple imputation using Bayesian linear imputation model in survival analysis setting. We evaluated the proposed method on the motivated data set collected in HIV-infected patients enrolled in an observational cohort study in Senegal, which contains several incomplete variables. We found that our method performs well to estimate hazard ratio compared with the linear imputation methods, when data are missing completely at random, or missing at random.
Plan de classementEntomologie médicale / Parasitologie / Virologie [052] ; Sciences fondamentales / Techniques d'analyse et de recherche [020]
Descr. géo.SENEGAL
LocalisationFonds IRD [F B010061193]
Identifiant IRDfdi:010061193
Lien permanenthttp://www.documentation.ird.fr/hor/fdi:010061193

Export des données

Disponibilité des documents

Télechargment fichier PDF téléchargeable

Lien sur le Web lien chez l'éditeur

Accès réservé en accès réservé

HAL en libre accès sur HAL


Accès aux documents originaux :

Le FDI est labellisé CollEx

Accès direct

Bureau du chercheur

Site de la documentation

Espace intranet IST (accès réservé)

Suivi des publications IRD (accès réservé)

Mentions légales

Services Horizon

Poser une question

Consulter l'aide en ligne

Déposer une publication (accès réservé)

S'abonner au flux RSS

Voir les tableaux chronologiques et thématiques

Centres de documentation

Bondy

Montpellier (centre IRD)

Montpellier (MSE)

Cayenne

Nouméa

Papeete

Abidjan

Dakar

Niamey

Ouagadougou

Tunis

La Paz

Quito