Publications des scientifiques de l'IRD

Roy M., Gonneau C., Rocheteau Alain, Berveiller D., Thomas J. C., Damesin C., Selosse M. A. (2013). Why do mixotrophic plants stay green ? A comparison between green and achlorophyllous orchid individuals in situ. Ecological Monographs, 83 (1), p. 95-117. ISSN 0012-9615.

Titre du document
Why do mixotrophic plants stay green ? A comparison between green and achlorophyllous orchid individuals in situ
Année de publication
2013
Type de document
Article référencé dans le Web of Science WOS:000317043500006
Auteurs
Roy M., Gonneau C., Rocheteau Alain, Berveiller D., Thomas J. C., Damesin C., Selosse M. A.
Source
Ecological Monographs, 2013, 83 (1), p. 95-117 ISSN 0012-9615
Some forest plants adapt to shade by mixotrophy, i.e., they obtain carbon both from photosynthesis and from their root mycorrhizal fungi. Fully achlorophyllous species using exclusively fungal carbon (the so-called mycoheterotrophic plants) have repeatedly evolved from such mixotrophic ancestors. However, adaptations for this evolutionary transition, and the reasons why it has happened a limited number of times, remain unknown. We investigated this using achlorophyllous variants (i.e., albinos) spontaneously occurring in Cephalanthera damasonium, a mixotrophic orchid. In two populations, we compared albinos with co-occurring green individuals in situ. We investigated vegetative traits, namely, shoot phenology, dormancy, CO2 and H2O leaf exchange, mycorrhizal colonization, degree of mycoheterotrophy (using C-13 abundance as a proxy), and susceptibility to pathogens and herbivores. We monitored seed production (in natural or experimental crosses) and seed germination. Albinos displayed (1) more frequent shoot drying at fruiting, possibly due to stomatal dysfunctions, (2) lower basal metabolism, (3) increased sensitivity to pathogens and herbivores, (4) higher dormancy and maladapted sprouting, and, probably due to the previous differences, (5) fewer seeds, with lower germination capacity. Over the growing season, green shoots shifted from using fungal carbon to an increasingly efficient photosynthesis at time of fruiting, when fungal colonization reached its minimum. Conversely, the lack of photosynthesis in fruiting albinos may contribute to carbon limitation, and to the above-mentioned trends. With a 10(3) x fitness reduction, albinos failed a successful transition to mycoheterotrophy because some traits inherited from their green ancestors are maladaptive. Conversely, mycoheterotrophy requires at least degeneration of leaves and stomata, optimization of the temporal pattern of fungal colonization and shoot sprouting, and new defenses against pathogens and herbivores. Transition to mycoheterotrophy likely requires progressive, joint evolution of these traits, while a sudden loss of photosynthesis leads to unfit plants. We provide explanations for the evolutionary stability of mixotrophic nutrition and for the rarity of emergence of carbon sinks in mycorrhizal networks. More broadly, this may explain what prevents the emergence of fully heterotrophic taxa in the numerous other mixotrophic plant or algal lineages recently described.
Plan de classement
Sciences du monde végétal [076]
Localisation
Fonds IRD [F B010060788]
Identifiant IRD
fdi:010060788
Contact