Publications des scientifiques de l'IRD

Raja Z., Andre S., Piesse C., Sereno Denis, Nicolas P., Foulon T., Oury Bruno, Ladram A. (2013). Structure, antimicrobial activities and mode of interaction with membranes of Bovel Phylloseptins from the painted-belly leaf frog, Phyllomedusa sauvagii. Plos One, 8 (8), p. e70782. ISSN 1932-6203.

Titre du document
Structure, antimicrobial activities and mode of interaction with membranes of Bovel Phylloseptins from the painted-belly leaf frog, Phyllomedusa sauvagii
Année de publication
2013
Type de document
Article référencé dans le Web of Science WOS:000323115800021
Auteurs
Raja Z., Andre S., Piesse C., Sereno Denis, Nicolas P., Foulon T., Oury Bruno, Ladram A.
Source
Plos One, 2013, 8 (8), p. e70782 ISSN 1932-6203
Transcriptomic and peptidomic analysis of skin secretions from the Painted-belly leaf frog Phyllomedusa sauvagii led to the identification of 5 novel phylloseptins (PLS-S2 to -S6) and also of phylloseptin-1 (PSN-1, here renamed PLS-S1), the only member of this family previously isolated in this frog. Synthesis and characterization of these phylloseptins revealed differences in their antimicrobial activities. PLS-S1, -S2, and -S4 (79-95% amino acid sequence identity; net charge = +2) were highly potent and cidal against Gram-positive bacteria, including multidrug resistant S. aureus strains, and killed the promastigote stage of Leishmania infantum, L. braziliensis and L. major. By contrast, PLS-S3 (95% amino acid identity with PLS-S2; net charge = +1) and -S5 (net charge = +2) were found to be almost inactive against bacteria and protozoa. PLS-S6 was not studied as this peptide was closely related to PLS-S1. Differential scanning calorimetry on anionic and zwitterionic multilamellar vesicles combined with circular dichroism spectroscopy and membrane permeabilization assays on bacterial cells indicated that PLS-S1, -S2, and -S4 are structured in an amphipathic a-helix that disrupts the acyl chain packing of anionic lipid bilayers. As a result, regions of two coexisting phases could be formed, one phase rich in peptide and the other lipid-rich. After reaching a threshold peptide concentration, the disruption of lipid packing within the bilayer may lead to local cracks and disintegration of the microbial membrane. Differences in the net charge, a-helical folding propensity, and/or degree of amphipathicity between PLS-S1, -S2 and -S4, and between PLS-S3 and -S5 appear to be responsible for their marked differences in their antimicrobial activities. In addition to the detailed characterization of novel phylloseptins from P. sauvagii, our study provides additional data on the previously isolated PLS-S1 and on the mechanism of action of phylloseptins.
Plan de classement
Sciences fondamentales / Techniques d'analyse et de recherche [020] ; Entomologie médicale / Parasitologie / Virologie [052]
Localisation
Fonds IRD [F B010060564]
Identifiant IRD
fdi:010060564
Contact