Publications des scientifiques de l'IRD

Fort J., Steen H., Strom H., Tremblay Yann, Gronningsaeter E., Pettex E., Porter W. P., Gremillet D. (2013). Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet. Journal of Avian Biology, 44 (3), p. 255-262. ISSN 0908-8857.

Titre du document
Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet
Année de publication
2013
Type de document
Article référencé dans le Web of Science WOS:000318811100007
Auteurs
Fort J., Steen H., Strom H., Tremblay Yann, Gronningsaeter E., Pettex E., Porter W. P., Gremillet D.
Source
Journal of Avian Biology, 2013, 44 (3), p. 255-262 ISSN 0908-8857
At the onset of winter, warm-blooded animals inhabiting seasonal environments may remain resident and face poorer climatic conditions, or migrate towards more favourable habitats. While the origins and evolution of migratory choices have been extensively studied, their consequences on avian energy balance and winter survival are poorly understood, especially in species difficult to observe such as seabirds. Using miniaturized geolocators, time-depth recorders and a mechanistic model, we investigated the migratory strategies, the activity levels and the energy expenditure of the closely-related, sympatrically breeding Brunnich's guillemots Uria lomvia and common guillemots Uria aalge from BjOrnOya, Svalbard. The two guillemot species from this region present contrasting migratory strategies and wintering quarters: Brunnich's guillemots migrate across the North Atlantic to overwinter off southeast Greenland and Faroe Islands, while common guillemots remain resident in the Barents, the Norwegian and the White Seas. Results show that both species display a marked behavioural plasticity to respond to environmental constraint, notably modulating their foraging effort and diving behaviour. Nevertheless, we provide evidence that the migratory strategy adopted by guillemots can have important consequences for their energy balance. Overall energy expenditure estimated for the non-breeding season is relatively similar between both species, suggesting that both southward migration and high-arctic winter residency are energetically equivalent and suitable strategies. However, we also demonstrate that the migratory strategy adopted by Brunnich's guillemots allows them to have reduced daily energy expenditures during the challenging winter period. We therefore speculate that resident' common guillemots are more vulnerable than migrating' Brunnich's guillemots to harsh winter environmental conditions.
Plan de classement
Limnologie biologique / Océanographie biologique [034]
Description Géographique
ARCTIQUE
Localisation
Fonds IRD [F B010060327]
Identifiant IRD
fdi:010060327
Contact