Publications des scientifiques de l'IRD

Fabritus L. de, Nougairede A., Aubry F., Gould E. A., De Lamballerie Xavier. (2015). Attenuation of tick-borne encephalitis virus using large-scale random codon reencoding. Plos Pathogens, 11 (3), p. e1004738 [18 p.]. ISSN 1553-7366.

Titre du document
Attenuation of tick-borne encephalitis virus using large-scale random codon reencoding
Année de publication
2015
Type de document
Article référencé dans le Web of Science WOS:000352201900055
Auteurs
Fabritus L. de, Nougairede A., Aubry F., Gould E. A., De Lamballerie Xavier
Source
Plos Pathogens, 2015, 11 (3), p. e1004738 [18 p.] ISSN 1553-7366
Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5-10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.10(5) or 2.10(6) TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wildtype or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly reencoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses.
Plan de classement
Santé : généralités [050] ; Entomologie médicale / Parasitologie / Virologie [052]
Identifiant IRD
PAR00013078
Contact