Publications des scientifiques de l'IRD

Renaud S., Alibert P., Auffray Jean-Christophe. (2012). Modularity as a source of new morphological variation in the mandible of hybrid mice. Bmc Evolutionary Biology, 12, p. 141. ISSN 1471-2148.

Titre du document
Modularity as a source of new morphological variation in the mandible of hybrid mice
Année de publication
2012
Type de document
Article référencé dans le Web of Science WOS:000311511600001
Auteurs
Renaud S., Alibert P., Auffray Jean-Christophe
Source
Bmc Evolutionary Biology, 2012, 12, p. 141 ISSN 1471-2148
Background: Hybridization is often seen as a process dampening phenotypic differences accumulated between diverging evolutionary units. For a complex trait comprising several relatively independent modules, hybridization may however simply generate new phenotypes, by combining into a new mosaic modules inherited from each parental groups and parts intermediate with respect to the parental groups. We tested this hypothesis by studying mandible size and shape in a set of first and second generation hybrids resulting from inbred wild-derived laboratory strains documenting two subspecies of house mice, Musmusculus domesticus and Musmusculus musculus. Phenotypic variation of the mandible was divided into nested partitions of developmental, evolutionary and functional modules. Results: The size and shape of the modules were differently influenced by hybridization. Some modules seemed to be the result of typical additive effects with hybrids intermediate between parents, some displayed a pattern expected in the case of monogenic dominance, whereas in other modules, hybrids were transgressive. The result is interpreted as the production of novel mandible morphologies. Beyond this modularity, modules in functional interaction tended to display significant covariations. Conclusions: Modularity emerges as a source of novel morphological variation by its simple potential to combine different parts of the parental phenotypes into a novel offspring mosaic of modules. This effect is partly counterbalanced by bone remodeling insuring an integration of the mosaic mandible into a functional ensemble, adding a non-genetic component to the production of transgressive phenotypes in hybrids.
Plan de classement
Sciences du monde animal [080]
Identifiant IRD
PAR00009545
Contact